A unified probabilistic model for independent and principal component analysis
نویسنده
چکیده
Principal component analysis (PCA) and independent component analysis (ICA) are both based on a linear model of multivariate data. They are often seen as complementary tools, PCA providing dimension reduction and ICA separating underlying components or sources. In practice, a two-stage approach is often followed, where first PCA and then ICA is applied. Here, we show how PCA and ICA can be seen as special cases of the same probabilistic generative model. In contrast to conventional ICA theory, we model the variances of the components as further parameters. Such variance parameters can be integrated out in a Bayesian framework, or estimated in a more classic framework. In both cases, we find a simple objective function whose maximization enables estimation of PCA and ICA. Specifically, maximization of the objective under Gaussian assumption performs PCA, while its maximization for whitened data, under assumption of non-Gaussianity, performs ICA.
منابع مشابه
مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملHidden Markov Bayesian Principal Component Analysis Hidden Markov Bayesian Principal Component Analysis
Probabilistic Principal Component Analysis is a reformulation of the common multivariate analysis technique known as Principal Component Analysis. It employs a latent variable model framework similar to factor analysis allowing to establish a maximum likelihood solution for the parameters that comprise the model. One of the main assumptions of Probabilistic Principal Component Analysis is that ...
متن کاملA UNIFIED MODEL FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH UNCERTAIN ACTIVITY DURATIONS
In this paper we present a unified (probabilistic/possibilistic) model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations and a concept of a heuristic approach connected to the theoretical model. It is shown that the uncertainty management can be built into any heuristic algorithm developed to solve RCPSP with deterministic activity durations. The esse...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کامل